Comparing Network Coding with Multicommodity Flow for the k-pairs Communication Problem
نویسندگان
چکیده
Given a graph G = (V, E) and k source-sink pairs of vertices, this papers investigates the maximum rate r at which all pairs can simultaneously communicate. We view this problem from two perspectives and compare their advantages. In the multicommodity flow formulation, a solution provides dedicated bandwidth r between each source-sink pair. In the information flow formulation, a vertex can transmit a function of the information it received thereby allowing multiple source-sink pairs to share bandwidth. For directed acyclic graphs with n vertices, we show that the rate achievable in the information flow formulation can be a multiplicative factor n larger than the rate achievable in the multicommodity flow formulation. It is well known [5] that for undirected graphs with n vertices, in the multicommodity flow formulation, the maximum rate achievable can be an O(1/ log|V |) multiplicative factor smaller than the value of the sparsest cut. We extend this result to show that the maximum rate achievable in the information flow setting can be an O(1/ log|V |) multiplicative factor smaller than the sparsest cut value. For directed acyclic graphs G, we define a parameter called the value of the most meager cut which is an upper bound for the maximum rate achievable in the information flow setting. We also present an example illustrating that this upper bound is not always tight.
منابع مشابه
A Fast Strategy to Find Solution for Survivable Multicommodity Network
This paper proposes an immediately efficient method, based on Benders Decomposition (BD), for solving the survivable capacitated network design problem. This problem involves selecting a set of arcs for building a survivable network at a minimum cost and within a satisfied flow. The system is subject to failure and capacity restriction. To solve this problem, the BD was initially proposed with ...
متن کاملCode Construction for Two-Source Interference Networks
Most literature on network coding focuses on the multicast case where performance bounds and codes that achieve these bounds were found. The general case seems to be much more complicated to analyze. Koetter and Médard [1] gave an algebraic formulation of linear network codes in the general communication problem with multiple sources. However, the complexity of finding the coding coefficients o...
متن کاملA Simulated Annealing Algorithm for Unsplittable Capacitated Network Design
The Network Design Problem (NDP) is one of the important problems in combinatorial optimization. Among the network design problems, the Multicommodity Capacitated Network Design (MCND) problem has numerous applications in transportation, logistics, telecommunication, and production systems. The MCND problems with splittable flow variables are NP-hard, which means they require exponential time t...
متن کامل4.1 Edge Disjoint Paths
Problem Statement: Given a directed graphG and a set of terminal pairs {(s1, t1), (s2, t2), · · · , (sk, tk)}, our goal is to connect as many pairs as possible using non edge intersecting paths. Edge disjoint paths problem is NP-Complete and is closely related to the multicommodity flow problem. In fact integer multicommodity flow is a generalization of this problem. We describe a greedy approx...
متن کاملUniform multicommodity flow in the hypercube with random edge capacities
We give two results for multicommodity flows in the d-dimensional hypercube Qd with independent random edge-capacities distributed like a random variable C where P[C > 0] > 1/2. Firstly, with high probability as d → ∞, the network can support simultaneous multicommodity flows of volume close to E[C] between all antipodal vertex pairs. Secondly, with high probability, the network can support sim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004